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I. Overview 

We have looked at symbolic inversion from several perspectives. First, we looked 
at a number of symbolic algebra and mathematical tool packages in order to evaluate their 
capabilities and methods, specifically with respect to symbolic inversion. Second, we ported 
the KATE system (without hardware interface) to a Zenith 2-248 microcomputer running 
Golden Common Lisp. The interesting thing about our port is that it allows the user to 
have measurements vary and components fail in a "non-deterministic" manner based upon 
random values from probability distributions. This type of environment has potential for 
using KATE for training purposes. Third, we thoroughly studied INVERT as currently 
implemented in KATE, documented its operation, identified some of its weaknesses and 
made some corrections to it. The corrections and enhancements are primarily in the way 
that logical conditions involving AND's and ORs and inequalities are processed. In 
addition, the capability to handle equalities was also added. It was found that INVERT 
returned incorrect results on several classes of expressions. We also made suggestions 
regarding the handling of ranges in INVERT. Last, we have looked at other approaches 
to the inversion process and made recommendations as to how future versions of KATE 
should perform symbolic inversion. 

11. Computer Algebra and Symbolic Mathematical Software 

It has been stated [Corn871 that "INVERT performs some of the same mathematical 
manipulations that Artificial Intelligence programs such as Mathematica and TK Solver do, 
but is less comprehensive." In order to explore further the nature of this similarity and to 
gain a better understanding of the working of symbolic algebra and "mathematical tool" 
programs, several such packages were acquired and compared. We will describe each of 
the packages examined individually and then their relationship to INVERT as a group. 
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Computer algebra systems 
a - x  + b = c for x to yield x 

Computer Algebra 
perform symbolic mathematics, for example, solving 
= (c-b)/a. In addition, most are capable of doing 

numeric computations such as evaluating the equation above at specific values of a 
and c. Their capabilities often include algebraic simplification, polynomial factorization 

over the integers, solution of equations, integration of definite and indefinite integrals, and 
differentiation in several variables. Perhaps the best known computer algebra system is 
MACSYMA. Even though only widely available since 1983, its development began with 
Project MAC in the late 1960s. Today, more than sixty different computer algebra systems 
are known to exist [Hulz83]. We give a brief overview of three of the more widely used 
computer algebra systems: MACSYMA, Maple, and MuMATH. 

b 

MACSYMA 
MACSYMA [MACS83, Rand841 was originally developed at MI" to run on the 

DEC-10 and was made available to other users via ARPANET. Since 1983, Symbolics 
Corporation has been responsible for its distribution and it is now available on several 
Motorola 68000 class machines, VAXEN, Symbolics and Honeywell. MACSYMA is a 
large (8.7 Mbytes of Disk, 3.25 Mbytes of RAM) system written in LISP. It is commonly 
accepted to be the most comprehensive and capable symbolic algebra package in existence 
today, even though some of the newer systems have more capabilities in terms of graphics 
and user interfaces. MACSYMA's capabilities for solving and simplifying equations are 

enormous but its forte is in the areas of integration, differentiation, and differential 
equations. 

MaDle 
Maple [Char83, Char841 was developed at the University of Waterloo to be a 

compact, portable computer algebra system to be used on microcomputers in educational 
environments. It requires modest resources (3.1 Mbytes of Disk, 100 Kbytes of RAM) but 
is not really a stand-alone system since it does not even have built-in editing facilities. In 
spite of these constraints, it is capable of doing a wide variety of symbolic mathematics 
such as factoring, differentiation, integration, computing limits and series, matrix 
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manipulations and solving systems of equations. In all of these areas, Maple is more 
limited than MACSYMA. For example, Maple is not able to perform integration involving 
inverse trigonometric functions while MACSYMA has that capability. Maple does not 
currently solve ordinary differential equations. 

MuMAm 
MuMATH [Wilf82, Yun801 was the first symbolic algebra system developed for 

microcomputers. It was developed in a LISP dialect MuLISP. Like Maple, MuMATH 
requires only modest resources (600 Kbytes of Disk, 125 Kbytes of RAM), and like Maple, 
it has limited capabilities relative to MACSYMA. It has facilities for factoring, solving 
equations, integration and differentiation at the first-year calculus level. Perhaps the biggest 
selling point for MuMATH is that, like MACSYMA, the knowledgeable user can build very 
powerful tools by integrating the MuLISP language with the symbolic mathematical tools 
built into the system. 

Mathematical Tools 
In the 80's a new breed of software tool has become available which we will call 

"mathematical tools" for lack of a standard name for this type of software package. 
Marketing techniques often try to sell these tools as computer algebra systems when they 
are not. These tools are useful for solving systems of equations, plotting curves, evaluating 
functions, derivatives and definite integrals, but they do very little or no symbol 
manipulation. We will describe the capabilities of two such packages which we 
examined: MathCAD from Mathsoft, and Eureka from Borland. 

MathCAD 
MathCAD [Math871 can be thought of as a scratchpad interface to a toolbox 

containing those numeric and graphing tools which are most useful to the practicing scientist 
or engineer. It can perform matrix operations, solve simultaneous equations and 
inequalities, compute derivatives and integrals, perform regressions, spline curve fitting, 
Fourier transforms and inverses and numerous other operations as long as the values 
involved are all numeric in nature. For example, MathCAD has no trouble evaluating 
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even the most complex double or triple integral but cannot do anything with even the most 
elementary indefinite integral. In general, MathCAD can only solve problems numerically, 
hence all answers must be numeric, they cannot be symbolic. This extends even to 

simplifying simple equalities such as 3 + x = 2*x - 4. There is no way to express even 

this simple problem directly in MathCAD. The plotting facilities in MathCAD are excellent 
and easy to use as is the overall user interface. It has built-in routines for many functions 
including, among many others, Euler’s gamma function r(z), Kronecker’s delta function 
S(xl,x2), and Heaviside’s step function O(X) and is a very useful tool for the applied 
mathematician or engineer already using a microcomputer in their work. 

Eureka 
Eureka [Eure87] is Borland‘s competitor for MathCAD. It costs only about one- 

third of the cost of MathCAD and probably has about one-half to two-thirds the 

functionality. The interface is very familiar to those who have used other Borland products 
but the system lacks the polish and professional touch of MathCAD. Given the overall 
similarity between the two products, Eureka has little to recommend it other than price. 

Some Conclusions 

The world of computer symbolic algebra is a rich, deep area for mathematical and 
computer science research [cf., Calm821. We have not touched upon those difficulties 
here, only sampled some of the current products. All of the symbolic algebra packages 
mentioned have much more capability for performing computer algebra than does 
INVERT. Mathematically, the two are incomparable. The commercial products are 
generally distributed as compiled products and their techniques can only be, with the 
possible exception of MACSYMA, inferred or guessed. On the other hand, INVERT is 
capable of working with logical relationships expressed in LISP which are inappropriate 
for these other general-purpose systems. Is there anything to be learned from looking at 
these general-purpose systems? I think the answer is yes. I came away from this part of 
the project confident that INVERT is capable of handling the class of practical 
mathematical problems it needs to handle and that it can be enhanced with other 
capabilities as needed. Up to this point, most of the control functions handled by INVERT 
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are simple step functions or arithmetic expressions. Even non-monotonic and non-linear 
relationships could be handled by an improved notation and convention for representing 
ranges and multiple values in KATE. On the other hand, using these packages led me to 
believe that KATE could be improved by incorporating the use of UNITS into the 
computations carried out in INVERT. At the current time, the UNITS information stored 
in an objects frame is only used for display purposes. It would not be too difficult to have 
the operational routines in KATE such as INVERT process this information during 
computations. As a simple example, there is currently no check to ensure that the system 
is not adding feet and inches, or pounds and ounces. It may be argued that if the 

knowledge base is correct and standard units are used, such checks are not needed, but unit 
conversion checks could readily be implemented and would add additional integrity to 
KATE. 

111. INVERT Software Description 

At the highest level, INVERT can be viewed as a function which when given an 
equation and a variable solves the equation in terms of that variable. In the context of 
the operation of KATE, the inversion process begins by assembling a symbolic formula 
that expresses a sensor’s expected value in terms of some other controlling object. This 
is done by composing an expression from the sensor’s STATUS or SOURCE-PATH or 
SOURCE slot. The module INVERT then solves that expression for the controlling object 
given an observed or expected value [Scar87]. 

The primary variables used in INVERT are: 
The right hand side of the equation to be inverted. 
The variable to be solved for. 
The left hand side of the equation to be inverted. This is 
usually a constant and if it is numeric, it is automatically 
converted to floating point. 
A sublist of RHS beginning with either the first appearance of 
VAR in RHS at the top level or the first sublist of RHS 
containing VAR at a lower level. FOUND is constructed by 
using a variant of SOME to map the utility function DEEP- 
FIND over RHS. 

RHS - 
VAR - 
LHS - 

FOUND - 
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FOUND2 - FOUND2 is similar to FOUND except that it is a sublist of 
FOUND beginning with the second appearance of VAR in 
RHS. It is computed using only the CDR of FOUND, not all 
of RHS. A null value for FOUND2 indicates that VAR 
appears only once in RHS. Well, that’s the way it is supposed 
to work but it doesn’t quite do that. For a RHS like (+ (- X X) 
3) with X as VAR, FOUND2 will be nil even though X appears 
twice. 

The following comments apply to these variables and their use: 

It is assumed that VAR appears once in RHS (except for CONDs where 
VAR may appear once in each COND clause but only in the first or last 
term of the clause). This assumption points out one of the current 
weaknesses in INVERT. Little or no standard simplification and 
rearrangement of expressions is done. Granted, simplification can be time- 
consuming but as KATE is used with larger and larger knowledge bases, this 
kind of feature found in general-purpose symbolic algebra systems will 
become necessary. 

If no value of VAR can make the RHS equal the LHS, INVERT returns the 
special value *INNOCENT*. ActualZy, I find the use of the special value 
*INNOCENT to be very misleading and confusing as returned by IAW3RT. The 
value *INNOCENT* ir sometimes returned to indicate that value of VAR 
can sari@ the conditions of the inversion and in other situations it k returned 
as a signal that &g value of VAR satirfies the conditions. I find this very 
conjiuing. 

A subrange value is returned as a 3-element list of the form (*pair* low-value 
high-value). This is another criticism of the current version of INVERT. It 
is too restrictive in its representation and handling of subranges. For 
example, there is no standard way to represent the fact that VAR can take 
on values in the range [0..3] OR [5..10]. In general, INVERT is sloppy about 
handling closed versus open intervals but that is probably because the 
measurements used are not themselves precise, often including tolerance 
values. 

The value returned by INVERT may be an unevaluated expression such as 
(t 4 2). It is not clear why terms are not evaluated when constructed. 

Execution Details 
The function INVERT proceeds as follows. It first checks for special and trivial 

cases such as null arguments or VAR not appearing within RHS. The recursion base case 
of equal RHS and VAR values is checked for at this point. INVERT then checks for 
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special RHS values such as C O W S  or an AND containing multiple occurrences of VAR. 
These are handled separately. The arithmetic operators +, -, *, and / are then processed 
by a recursive call to INVERT passing a new RHS which is the CAR of FOUND (the 
first term containing VAR) and a new LHS constructed from the "inverse" arithmetic 
operator from the first operator in the old RHS, the old LHS, and any other constants in 
the old RHS. This recursive call creates a new LHS which wraps the inversion of the 
operator currently under examination around the old LHS. Relational operators < I' and 
">" are handled separately as are if, am$ or, not and ma. The remainder of this section 
focuses on the handling of these special cases. . 
COND's 

To invert a COND, parameters consisting of a list of clauses, a VAR and LHS are 
needed. The operation of DO-COND is extremely convoluted and difficult to follow. I 
have studied it extensively and still do not understand what all of its special case 
considerations are intended to do. The most typical operation of DO-COND is to go 
through the list of COND clauses, looking for the first one containing VAR and whose 
returned value is equal to the value of the LHS value. When such a clause is found, its test 
condition is inverted recursively, seeking to find a value for VAR to make the value of the 
test equal to LHS. If no satisfactory clause is found, *INNOCENT* is returned. 

AND Clause Co ntaininq VAR Twice 
If an AND contains more than one appearance of VAR, then it is handled by 

overlapping the solutions of those terms in which VAR appears. As noted in a later section 
dealing with examples of errors found in INVERT, this is one of those areas in which 
INVERT can return incorrect answers because the value of the RHS is not considered in 
the solution returned. 

Ineaualitiea 
To handle inequalities, three conditions are checked, the value of the LHS (called 

EV-LHS), whether or not the VAR being solved for appears immediately after the 
relational operator and whether the relation is less than or greater than. Less than and 
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greater than are the only two inequalities permitted. A simple boolean test of these three 
conditions is performed and a value returned. The testing of inequalities is another 
weakness of INVERT. The inequality is inverted solely in terms of VAR and no checking 
is done on the relationship between other constants in the expression. Also, the form of 
the expressions is unnecessarily restrictive, insisting that VAR appear as the first or last 
item in the expression. Examples of these problems are shown in a later section. 

IF-conditions 
In order to invert an IF, the test condition, the THEN-part, the ELSE-part, the first 

term containing VAR and the value of the LHS are used. The following tests are 
performed and a value returned. If the VAR term and test condition are equal, and the 
value of the LHS equals the THEN-part, then t is returned. If the VAR term and test 
condition are equal, and the value of the LHS equals the ELSE-part, then nil is returned. 
If the VAR term and the test are equal, *innocent* is returned. If the VAR term and the 
THEN-part are equal and the test evaluates to true, then *innocent* is returned. 
Otherwise, if the test evaluates to true then *innocent* is returned, otherwise the value of 
the else part is returned. 

IV. Comments about INVERT 

The following comments regarding INVERT are the most important part of this 
report as they illuminate several areas of weakness in the current operation of INVERT. 
Some, but not all, of these criticisms have been addressed and corrected in a modified 
version of INVERT submitted with this report. The comments are divided into two 
sections. The first section describes situations where INVERT appears to work correctly, 
that is, it does not appear to fail, but it return misleading or incorrect results. The second 
section describes capabilities and kinds of problems that INVERT cannot currently handle 
at all but that we think are practical and should be done. In all of these comments we 
have tried to keep in mind the specialized environment in which INVERT operates and the 
fact that INVERT is not meant to be a general-purpose symbolic algebra inversion routine. 
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On the other hand, we expect that in the near future the knowledge base upon which 
INVERT relies may be machine generated or, at the very least, will be produced with less 
attention to detail than the prototype knowledge bases we have seen. It is necessary that 
INVERT be able to handle control relationships expressed in various forms and more 
flexibly than it currently operates. 

Shortcomings in INVERT 
The following examples are designed to illuminate areas in which INVERT returns 

erroneous, incomplete, or misleading results. Most of them have to do with inverting 
logical quantities and relations. INVERT does a very good job of inverting algebraic 
expressions containing the operators +, -, * and /. It is primarily in the realm of Boolean 
or logical quantities that INVERT needs a new, consistent and well-founded approach. 
The examples have been designed to illuminate general areas of weakness which we feel 
could easily be encountered with the type of control relationships used in KATE’S 
knowledge base. They have been kept as simple as possible in order to focus the reader’s 
attention upon the class of problem being illustrated. 

returns *innocent* implying that no value of x would cause the cond to return 
3 when in fact any value of x between 5 and 10 will cause the cond to return 
3. This is a simple example of a large class of problems which INVERT does 
not handle correctly because its analysis does not probe deeply enough into 
the structure and meaning of the LISP form being inverted. 

2) (INVERT (cond ( ( c  x 5 )  1) 
( (> x 5 )  2) 1 

‘X 
2 )  

returns *innocent* whereas 
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(INVERT '(cond ( (< x 5) 1.0) 
( (> x 5 )  2 - 0 1  1 

'X 
2 )  

correctly returns (*pair* 5 100). The only difference is the two decimal 

points. The most efficient and simplest solution to this situation is to ensure 
that all values which enter the KATE system, either through hardware 
measurements or through the 
If that cannot be guaranteed, 
all numeric equality tests are 

3) (INVERT I (  < 1 X 10) 
'X 
t )  

knowledge base be expressed in floating point. 
then INVERT can be modified to ensure that 
performed using "=" instead of equal. 

returns (*pair* 1 100) when it should return (*pair* 1 10). The 
documentation for INVERT states that it is not capable of handling an 
inequality unless the Variable being solved for is at the beginning or end of 
the list of values so in that sense this error is excusable. On the other hand, 
INVERT should never return incorrect results without telling the user in 
some way. Our revisions for INVERT permit the Variable of interest to be 
any place in such a list of values for "<" or ">" so this problem can be 
considered corrected. 

4) (INVERT ( and ( < x 10 ) 
( > X I )  1 

'X 
t) 

returns (*pair* 1 10) just as it should. The alarming fact is that 

(INVERT I (  and ( < x 10 ) 
( > X I )  1 

'X 
n i l )  

also returns (*pair* 1 10) which is blatantly incorrect. This is an example 
of a large class of Boolean expressions for which the value of the Right Hand 
Side, in this case nil, is not used in the inversion process. This situation must 
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be corrected in order to have any degree of faith in the results returned by 
INVERT when any kind of logical expression is involved. 
(INVERT I (  < 1 5 x ) 

'X 
t) 

returns (*pair* 1 100) which is, once again, incorrect and misleading. 

(INVERT I (  + 1 x 3 x ) 
'X 
10) 

returns 10 or whatever the last argument is. This is again caused by an input 
which is not in a simplified form, but also another case in which the value 
returned is incorrect and misleading. 
(INVERT I (  < x 10 5 ) 

' X  

t) 

returns (*pair* 0 10) as the range of values for x which will make the 
expression t when in fact no value of x can make the expression true. 
(INVERT I (  cond ( and ( > x 0.0 ) ( < x 1.0 ) )  1.0 ) 

( and ( > x 1.0 ) ( < x 2.0 ) )  2.0 ) 
( and ( > x 2.0 ) ( < x 3.0 ) )  1.0 ) ) 

'X 
1.0) 

returns (*pair* 0 1) which is not really incorrect but is only a partial solution. 
This example illustrates the fact that INVERT is presently only able to invert 
monotonically increasing or decreasing step functions. As we shall discuss in 
a later section, KATE does not currently have a notation for representing 
multiple subranges of an interval as would be required for the correct 
inversion of this expression. 

Desirable Capabilities for INVERT 

The following comments are meant to point out areas where we feel INVERT needs 
enhancement. We have limited this wish-list to areas we think are practical and might well 
be encountered in new knowledge bases very similar to those we have seen. We will not 
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suggest, for example, that INVERT should be able to invert differential or integral 
equations because it is apparently not necessary to do so in the control environment KATE 
is expected to work in. 

INVERT should be able to work with other relational operators in addition to <, 
> and =. There is no obvious reason that INVERT should not handle less than or equal, 
greater than or equal and not equal. In fact, the whole topic of working with intervals in 
KATE needs to be clarified. There seems to be no distinction between open and closed 
intervals in KATE, I assume this is because many measurements are analog in nature and 
are, in fact, not expected to be exact. That approach may lead to problems in the future 
as other components are encountered, perhaps digital in nature, in which exact equality 
or inequality is significant. 

A closely related criticism is that the only standard notation for representing 
intervals in KATE is the "(*pair* low high)" notation. There are conceivably many 
situations in which INVERT really needs to return a collection of subintervals and each 
one may need to be identified as open, closed, half-open, etc. Developing a notation is 
not complex but I will leave it to others to do so if the examples from the previous section 
and these comments are sufficient arguments for its desirability. As a consequence of 
working with collections of subintervals, the function OVERLAP will need to be rewritten. 
Some work along these lines can be found in my modified code. 

Just as the notation and handling of multiple intervals in INVERT is not fully 
developed, the use of the special value *INNOCENT* also causes some difficulties, at least 

for this investigator. It may well be that within the operation of KATE the following 
comments are irrelevant, but we found situations in which the returned value of 
*INNOCENT* could mean that either no value of the Variable of interest could satisfy the 
conditions for inversion or it could mean that any value of the Variable satisfied the 
conditions. These situations come up only in logical or relational expressions where the 
truth or falsity of the expression is determined not by the Variable of interest but by other 
constants or values in the expression. Thus, in some cases, No value of VAR could give the 
expression the appropriate value, whereas in the other cases Any value would do. In both 
of these cases, INVERT currently returns *INNOCENT*. These situations need to be 
checked thoroughly to assure that they do not cause problems in the operation of KATE. 
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There are no facilities in INVERT for simplifymg expressions. Again, simplification 
has not been necessary up until now but I think it will become more important as 
knowledge bases are created by programs instead of by engineers. As an example, if asked 
to invert an expression such as (+ 2 x X) for X, INVERT will return whatever value is 

passed in as the Left Hand Side when in fact it should be able to easily simplify the 
expression and then INVERT it. This is a simple example which would not really appear 
in a knowledge base but if expressions are assembled by KATE and passed to INVERT, 
it might be possible to generate similar problems where simplification would be necessary. 
Unfortunately, simplification of algebraic expressions is time-consuming. At some point a 
decision will have to be made on this trade-off between generality and speed. 

The previous section of examples points out that INVERT currently does not 
generally handle the inversion of lists very well when the Variable being solved for is not 
at one end of the list. This is easy to fix and some cases have been covered in our 
modifications to INVERT. Those examples also pointed to several classes of problems in 
which the value of the right hand side is ignored in inverting logical expressions. This 
situation must be fixed for inverting all classes of expressions, whether they be logical, 
arithmetic or based on (in)equalities. 

My final comment is really a question about system design. INVERT assembles 
the inversion of an expression and returns it to ALT-COM. I cannot understand why 
INVERT does not go ahead and EVALuate subexpressions as they are assembled rather 
than returning an assembled expression which ALT-COM must then evaluate. This is a 

minor point but one which aroused my curiosity when trying to understand how INVERT 
works. 

V. Modifications to DETECT 

In the time available for this work, we made several modifications and enhancements 
to the operation of INVERT. The Appendix contains code listings with modifications to 
the version of INVERT we started with indicated. Some of the changes were 
straightforward, are fully operational, and we recommend that they be incorporated into the 
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current working version of INVERT. Others are not fully operational but will give an 
indication of how they might be realized in INVERT. We will describe each of these 
modifications, evaluate its usefulness and point out potential problems. 

A very simple modification which we incorporated into our code was to eliminate 
the final, unnecessary, recursive call to INVERT when its work is completed. We found 
that the recursive calls to INVERT often terminate by a test in the main COND statement 
in INVERT of the form ( (eq rhs var) lhs) . Noting that this final call was 
unnecessary and, on many computer architectures, time-consuming, we tested these 
conditions and conditionally returned lhs before executing the recursive call. 

The function DO-INEQUALITY was modified to handle expressions in which the 
VAR being solved for appears anywhere in the list of values being checked. For example, 
our code can invert an expression such as (< 1 X 10) for X whether the expression 

should be t or nil. In order to correctly evaluate such expressions, two primary changes 
were made to DO-INEQUALITY. The first is that the value of the Left-Hand-Side is used 
to determine whether to determine values of VAR which make the expression true or to 
return the complement of those values. In order to do this, we used the convention of 
expressing multiple intervals in the form "(*pair* low-value, high-value, ... low-value, high- 
value,). The second change was in the way that the other values in the list, other than 
VAR itself, were treated. These "constant" values are checked independently of the VAR 
being solved for and then a value of the VAR itself is determined which will make the 
expression either true or false, depending on the Left-Hand-Side. 

The processing of conjunctive conditions was modified primarily by incorporating the 
value of the Left-Hand-Side into the inversion. The modified code works the same as 
previously if the Left-Hand-Side is true. If the Left-Hand-Side evaluates to nil, the range(s) 
of solutions is complemented, again using the notation previously described for representing 
multiple intervals. 

The capability to invert expressions incorporating "=" was added to invert with all 
the generality described for the operations above. For example, inverting 
(= 2 X ( -  4 2) 2) for x with the Left-Hand-Side equal to t returns 2 as a result, 

whereas inverting the same expression for nil returns (*pair* 1 2 2 loo), indicating 

any value other than 2 is a solution. 
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VI. Future Directions 

Anyone familiar with the overall theory and operation of model-based expert system 
for process control, and in particular KATE, understands the central role that expression 
inversion plays. The purpose of this work was to understand how INVERT currently 
operates in KATE, if possible, to improve INVERT, and to make recommendations as to 
how future work on INVERT should proceed. We conclude this report with some very 
general comments on future directions. 

It is our conclusion that the choice, made several years ago, to have KATE perform 
its symbolic inversion of control relationships dynamically at execution time was generally 
a good decision. It has allowed KATE, the form of its knowledge base, and the interaction 
between system components to evolve gradually just as any research project must. As 

KATE moves from the lab into production it becomes critical that INVERT perform its job 
efficiently, smoothly, but most of all, correctly. We have found and pointed out areas in 
which correctness is not guaranteed. These problems must be corrected. 

The organization of INVERT as a decision-tree based, recursive function is efficient 
and a natural organization for parsing the kind of S-expressions encountered in control 
relationships in KATE'S knowledge base. We looked into the possibility of organizing 

INVERT along the lines of a theorem-prover, that is, using Unification as a pattern 

matcher in order to solve for the Variable of interest. There are at least two reasons that 

this avenue of research was not pursued further. The first is the existing investment in 
INVERT. INVERT works correctly and efficiently for simple arithmetic expressions and 
adding other arithmetic capabilities is not difficult. There is not enough potential gain in 
switching to a theorem-proving approach at this point to justify the development effort. 
The second factor is speed. For arithmetic expressions and step functions, which appear 
to be the primary material for INVERT, the theorem-proving approach involves more 
overhead than the prescriptive, decision-tree approach currently in use. If INVERT were 
intended to be a general-purpose symbolic inversion program, there would be potential 
advantages to a theorem-proving approach, but that is not the situation. 
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The final question we need to address is that of the efficiency and speed of 
operation of INVERT. We do not know, in fact, how important this issue is or will become 
as KATE is used with larger and more complex systems. We have no profiling data to 
indicate that INVERT is a bottleneck in KATE'S operation but we do know that INVERT 
is heavily used both in diagnostics and control and thus make the following comments 
under the assumption that any speedup in INVERT is desirable. As far as the current 
form of INVERT, we were only able to make very minor suggestions for improving speed. 
In order to gain useful speed, the only approach we view as promising is to pre-compute 
the inverse@) of an object at the time the frame for that object is defined and to attach 
that symbolic inversion to the property list of the object. We do not recommend doing this 
for all objects, only those whose control expressions have a small number (maybe < = 3) 
of Variables which could possibly be solved for. This approach requires more storage but 
would eliminate repeatedly constructing the symbolic inverse of an object at execution time. 



APPENDIX 

> 
> 
> 
> 
> 
> 
> 
> 
> 
> 
> 
> 
> 
> 
> 
> 

... ,,, This is a listing of those components of the file KDETECT.LSP 
f f ,  which have been modified. These modifications are located in 

(defun INVERT (rhs var xlhs taux found found2 constants 

... 
,,, ... \XATE\KDETECT.LSP 

(lhs (if (numberp xlhs) (float xlhs) xlhs))) 
(cond 

((or (eq lhs '*innocent*) (eq rhs '*innocent*)) '*innocent*) 
((null rhs) (error "in invert with nilt1) nil) 
( (eq rhs var) lhs) 
((atom rhs) (error "in invert with an atom") rhs) 
((sym-nlistp rhs) 
((not (deep-find var rhs)) 
(error "in invert not deep found") '*innocent*) 
((not (setq found (sym-some rhs #'(lambda (sub-rhs) 

(deep-find var sub-rhs))))) 
(error Ifin invert: no sub-term with the variable found") rhs) 

( (and (setq found2 (sym-some (cdr found) # (lambda (sub-rhs) 
(deep-f ind var sub-rhs) ) ) ) 

(error ''-a is neither atom nor listt1 rhs)) 

(equal (car found) (car found2))) 
(invert (car found) var lhs)) 

(do-cond (cdr rhs) var lhs) ) 
( (eq (car rhs) 'cond) 

( (and found2 (eq (car rhs) land) ) 
;; Handling of I'and1' with 11found211 modified to use LHS value 
(if lhs (overlap (mapcar # I  (lambda (term) 

(cond 
((deep-find var term) 
(invert term var t)) 

( (eval term) t) 
(t (list '*pair* 1. 0 . ) ) ) )  

(cdr rhs) ) ) 
(complement var (overlap :simplify-pairs 

(mapcar #'(lambda (term) 
(cond 
((deep-find var term) 
(invert term var t)) 

( (eval term) t) 
(t (list '*pair* 1. 0 . ) ) ) )  

(found2 (error It-% invert can't handle 'a: variable 'a appears 
in more than one term" rhs var)) 

(t (setq constants (remove (car found) (cdr rhs) ) ) 

(cdr rhs) 1 )  1 )  1 



> 
> 

> 
> 

> 
> 
> 
> 

;; Handling of recursive call modified 
(setq nextlhs 
(case (car rhs) 

(+ (list I- lhs (join-constants I+ constants))) 
( *  (list I/ lhs (join-constants I *  constants))) 
( -  (cond ((eq (car found) (cadr rhs)) 

(list I+  lhs (join-constants I+ constants) ) ) 
(t (list I- (join-constants I- constants) lhs 

(list * lhs (join-constants * constants) ) ) 
(t (list '/ (join-constants I/ constants) lhs 

) ) ) )  
(/ (cond ( (eq (car found) (cadr rhs) ) 

) ) I )  
(< (do-inequality lhs rhs found constants var t)) 
(> (do-inequality lhs rhs found constants var nil)) 
;; Handling of @'=I1 added 
(= (do-equality lhs rhs found constants var ) )  
(not (list 'not lhs)) 
(and(cond((invert-eval(join-constants 'andconstants)) 

(or (cond((not(invert-eval(join-constants lor 

lhs) 
(t '*innocent*))) 

lhs) 

(statval lhs) 
(quote lhs) 
(cstatus lhs) 
(a//d-cstatus (list 'inverse-a//d-cstatus lhs)) 
(plus-only (if (>= (invert-eval lhs) 0.) 

(if (do-if (cadr rhs) (caddr rhs) (nth 4 rhs) 

(max (if (>= (invert-eval lhs) 

constants))) 

(t '*innocent*))) 

lhs 
'*innocent*)) 

(car found) (invert-eval lhs) ) ) 

(invert-eval (join-constants 'max constants 
1 ) )  
lhs '*innocent*)) 

(otherwise (error "-%invert can't handle the 'a 
operatorw1 (car rhs) ) ) ) ) 

(if (eq (car found) var) 
nextlhs 
(invert (car found) var nextlhs))))) 



> ;; Handles processing of expressions beginning with = 
> (defun DO-EQUALITY ( lhs rhs found constants var &aux (ev-lhs (eval 
> (boolify lhs))) others) 
> (cond ( (equal (setq others (eval (cons I= constants) ) ) ev-lhs) 
> (car constants)) 
> ((and ev-lhs (null others)) 
> *innocent*) 
> (t (complement var (list '*pair* (eval (car constants)) 
> (eval (car constants))))))) 

> ;; Modified to handle VAR anywhere in list 
(defun DO-INEQUALITY (lhs rhs sublist constants var lessp 

&aux (ev-lhs (eval (boolify lhs))) 2nd?) 
(setq 2nd? (eq (car sublist) (cadr rhs))) 

> (setq last? (equal sublist (last rhs) ) ) 
> (cond ((and 2nd? ; var appears at beginning of list of arguments 
> (> (length constants) 1)) 
> (if (eval (cons (car rhs) constants)) 
> (invert (list (car rhs) (car sublist) (car constants)) 
> var lhs) 
> I *innocent*) ) 
> ((and last? ; var appears at end of list of arguments 
> (> (length rhs) 3)) 
> (if (eval (cons (car rhs) constants) ) 
> (invert (list (car rhs) (car (last constants)) 
> (car sublist)) var lhs) 
> *innocent*) ) 
> ( (> (length rhs) 3) ; not first or last 
> (setq predecessor (cadr 
> (member (cadrsublist)(reverseconstants):test lequal))) 
> (if (eval (cons (car rhs) constants) ) 
> (if ev-lhs 
> (overlap (list (invert (list(car rhs) (car sublist) 
> (cadr sublist) ) var lhs) 
> (invert 
> (list (car rhs) predecessor 
> (car sublist)) var lhs))) 
> (complement var (overlap (list (invert (list 
> (car rhs) 
> (car sublist) 
> (cadr sublist) ) 
> var t) 
> (invert (list 
> (car rhs) 
> predecessor 
> (car sublist)) 
> var t))))) 
> *innocent*) ) 



((or (and ev-lhs 2nd? lessp) 
(and ev-lhs (not 2nd?) (not lessp)) 
(and (not ev-lhs) (not 2nd?) lessp) 
(and (not ev-lhs) Znd? (not lessp))) 

'(*pair* ,(lower-bound var) ,(car constants))) 
(t '(*pair* ,(car constants) ,(upper-bound var))))) 

> ;; Given a VAR, returns complement of the ranges passed in range 
> ;; range can be of form (*pair* low high low high ... ) 
> (defun COMPLEMENT (var range) 
> 
> 
> 
> 
> 
> 
> 
> 
> 
> 
> 
> 
> 
> 
> 
> 
> 
> 
> 
> 
> 
> 

(cond ((equal range '*innocent*) **innocent*) 

(oddp (length range) ) 
(eq (car range) **pair*) 
(>= (length range) 3 ) )  

( (and (listp range) 

(setq range (sort (cdr range) I<= ) )  
(setq result '(*pair*)) 
(if (< (lower-bound var) (car range)) 

(setq result (append result (list (lower-bound var) 
(car range) 1 )  1)  

(POP range) 
(do* ( (nextlower (pop range) (pop range) ) 

(nextupper (pop range) (pop range) ) ) 
((null nextupper) 
(if (> (upper-bound var) nextlower) 

(setq result (append result(1ist nextlower 

result) ) 
(upper-bound var)))) 

(setq result (append result (list nextlower 
nextupper) 1 )  1 )  

(t (error "COMPLEMENT cant handle -av1 range) 
range) 1 )  

> ; Turn list of disjoint pairs into a flat list 
> (defun SIMPLIFY-PAIRS (pairs) 
> (if (equal pairs '*innocent*) 
> '*innocent* 
> (append (*pair*) 
> (remove '*pair* (cdr (flatlist pairs)) :test lequal)))) 
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